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Abstract— This report is a short description of the four-legged robot soccer team sharPKUngfu with the
specification of our work in 2006. This year, our sharPKUngfu Team participated in the Technical Challenge of
RoboCup 2006. In this event, our Medal Awarding challenge got the 8th place in the Open Challenge and 16th in
the sum. In October, we got the champion in RoboCup China Open 2006. We focus our research on collaborative
localization in dynamic environment, quadrupedal gaits optimization and intelligent behaviors. To improve robot
self-localization under more natural conditions, we create an experience-based collaborative localization approach
to help robot localize under more natural conditions. Moreover, a Particle Swarm Optimization approach to
generate high-speed quadrupedal gaits is proposed. In behavior module, our dynamic limit cycle based approach
for obstacle avoidance is shown in detail. To perform better under the rule 2006, we create our own set of special
actions and correlative strategies.
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1 Introduction

This year, we focus our research on collaborative
localization in dynamic environment, quadrupedal
gaits optimization and intelligent behavior. To
improve robot self-localization under more natu-
ral conditions, we create an experience-based col-
laborative localization approach to help robot lo-
calize under more natural conditions. Moreover, a
Particle Swarm Optimization approach to gener-
ate high-speed quadrupedal gaits is proposed. In
behavior module, our dynamic limit cycle based
approach for obstacle avoidance is shown in de-
tail. To perform better under the rule 2006, we
create our own set of special actions and correl-
ative strategies. Our code this year is based on
GT2004, which is shared by the German Team.

In the following section, we show the im-
provement in localization with specification of hu-
man cognition inspired collaborative approach. In
section 3, we present the work of our team in
quadruped gaits optimization, especially of how to
implement Particle Swarm Optimization approach
in high-speed forward gaits generation. In sec-
tion 4, strengthened collaboration among team-
mates is introduced. Moreover, improved obstacle
avoidance method based on dynamic limit cycle in
sharPKUngfu 2006 is presented.

2 Localization

To imitate human behaviors or even cognition pro-
cedures, most intelligent robots are designed to
localize actively and automatically. However, it
seems hard for robots to localize in a complex
terrain especially an unknown one. To solve this
problem, several methods have been applied for
localization these years. They mainly differ in

using probability to present the possible position
and applying various types of sensory information.
For example, [6] creates the probabilistic approach
based on Markov chain, named Monte Carlo Lo-
calization (MCL). For vision-based robot, [5] ap-
plies the landmark based MCL to localize in dy-
namic environment. [3], [9] present the cooper-
ative methods for autonomous position estimate.
Whereas those landmark-based methods seem not
sufficient if there is no such well recognized land-
mark considering the odometry error especially
when a collision occurs. In that circumstance, the
convergence of probability update procedure using
MCL is not so satisfied. It may take quite a long
time to work out the correct position. A recent
work explained in [8] uses the approach of com-
bining an image retrieval system with the Monte
Carlo localization. However, the computational
cost of this approach is expensive. Besides, the
requirement of building a huge database is not so
practical, especially in the complex environment.

The cooperation in self-localization among
multiple robots has many applications in real
robot systems (see [7] for overview). For instance,
[4] introduces a method for multi-robot localiza-
tion with certain preconditions. Such robot sys-
tems need to identify individual robots. It is quite
difficult to perform collaborative localization for
robots dealing with situations where they can de-
tect but not identify other robots. In addition,
taking the uncertainty of sensors into account, the
result of detecting individual robot is not so reli-
able. Those limitations of the approach make it
not so applicable for real robots localizing in com-
plex environments.

In the sharPKUngfu2006, we create a hu-
man cognition inspired collaborative approach
that combines image database for experience with-



out landmarks and real-time sensor data for a
group of vision-based mobile robots to estimate
their positions. We use the team message of dy-
namic reference object to improve the Markov lo-
calization for multiple mobile robots. On the one
hand, our approach presents a fast and feasible
system for vision-based mobile robots to localize
in the dynamic environment even if there is no
such recognized landmark to help. On the other
hand, we show the collaborative method with in-
troduction of Dynamic Reference Object to im-
prove the accuracy and robustness of self localiza-
tion, even in the circumstance that the robot can
not localize individually or has no idea of who is
nearby. Specific analysis can be found in [1].

Our method has been implemented on the
sharPKUngfu Team in lab experiments and real
soccer competitions. When the localization ex-
periment is conducted in lab, the robot per-
forms a scanning motion with its head (pan range
[−45◦, 45◦]) to search landmarks and exploit ex-
perience.

2.1 Individual Robot Localization

In this experiment, we use only one four-legged
robot to perform localization in RoboCup envi-
ronment. The robot is placed in the center of the
field at first. Then we let robot walk to one cor-
ner of the field. On the way to the corner, we add
artificial collisions to effect the odometry in a neg-
ative way. Specifically, we pick the legged robot
up for a while. This procedure makes the odom-
etry not so reliable to imitate real dynamic envi-
ronment outdoor. After that, the robot stands at
one point (shown in Fig. 1) where both landmark
perception and experience exploiting can be acti-
vated. Then robot performs a head scanning mo-

(a) (b)

Figure 1: Real position for individual localiza-
tion experiment. The solid symbol on the field
presented in (a) is the real position of the robot.
When stands at this position, the robot can obtain
vision information using head camera within the
head pan range. (b) is selected images in the view
at the position when camera heading directions
are −45◦, −10◦, 10◦ and 45◦.

tion to test different localization approach. If we
only use landmark based MCL, specifically detect-
ing beacons as new sensory information, the prob-

ability distribution converges not satisfied. The
result of only using landmark based localization is
shown in Fig. 2(b), where the robot can not get
the localization result immediately. Then we use
our hybrid system with landmark and experience
based Markov localization. Using our approach,
the robot can localize well after 5-10 seconds on
average. The experimental result is shown in Fig.
2(c).

(a) t = 0s (b) t = 10s (c) t = 10s

Figure 2: Comparison of particle distribution be-
tween our approach and only landmark(beacon)
based method. Solid arrows indicate MCL
particles(100). The calculated robot position is
indicated by the solid symbol. (a) is the initial
uniform distribution. (b) is the calculated result
of using only landmark based MCL. (c) is the re-
sult of applying our approach.

2.2 Collaborative Localization

In this experiment, the orange ball used in the
four-legged league is considered as the dynamic
reference object. We use three robots to per-
form multi-robot localization. Every robot uses
the hybrid system tested in the individual exper-
iment mentioned above. We set one of the three
robots as a sample to estimate our collaborative
approach. The other two robots move randomly
to catch the ball and broadcast the ball position
with position possibilities. We receive the calcu-
lated result from the sample robot. To imitate the
outdoor environment, this robot stands in a cer-
tain position on the field where we eliminate the
landmark which the robot can easily detect. Only
experience and collaboration can help the robot
localize. The localization result of the sample
robot which has used the collaborative approach
is shown in Fig. 3. The probability distribution
can converges quickly after 3-9 seconds when the
dynamic reference object is taken into account.

3 Gaits Optimization

In sharPKUngfu 2006, we implement the Parti-
cle Swarm Optimization (PSO) based approach
in high-speed gaits generation of Aibo. In our
method, different to many existing gait optimiza-
tion methods based on Genetic Algorithm, the ini-
tial values of parameters can be selected randomly



(a) t = 0s (b) t = 3s (c) t = 9s

Figure 3: The localization result of applying col-
laborative approach with dynamic reference ob-
ject. Solid arrows indicate MCL particles(100).
The calculated robot position is indicated by the
solid symbol. (a) is the initial uniform distribu-
tion. (b) is the calculated result after 3 seconds.
(c) is the well localization result after 9 seconds.

from a rational range. Those initial values need
not any hand-tune parameters. To avoid motor
abrasions of irrational gaits in first two genera-
tions, we artificially set fitness (forward speed) to
be zero. At the 10th iteration, we have already
achieved 390mm/s gait for Aibo, which is very
impressive. Fig. 4 shows the specific result of
optimization. By using this method, high-speed
gaits can be generated relatively fast with no need
of preset initial values. Specific implementation of
our gaits optimization method can be found in our
team report 2006 which is available on our web
site.

Figure 4: Forward gait optimization result. x-axis
represents the iterative times, while y-axis is the
best forward speed in each generation. The fastest
forward speed in this experiment is 416mm/s.

4 Behaviors

4.1 Obstacle Avoidance

In sharPKUngfu 2006, we introduce time-variable
limit cycle to help robot avoid obstacles. To show
the approach, we simply describe the shape of
Aibo as a cycle in the two dimensional plane.
Considering the following nonlinear system for dy-

namic limit cycle applying in Aibo:

˙̃x = ρ(ỹ + γx̃(
1
4
v2 − x̃2 − ỹ2))

˙̃y = ρ(−x̃ + γỹ(
1
4
v2 − x̃2 − ỹ2)) (1)

where ρ is the character factor of the obstacle
which is set to be a positive value. γ is the conver-
gence factor. And v is the relative velocity to the
obstacle which is dynamic when the robot moves.
The size of limit cycle is changing when system(1)
switches. To prove the circle x̃2 + ỹ2 = 1

4v2 is the
dynamic limit cycle of the switched system(1), we
use the common Lyapunov function:

V (x̃, ỹ) = x̃2 + ỹ2 (2)

such that:

V̇ (x̃, ỹ) = 2ργ(
1
4
v2 − x̃2 − ỹ2)(x̃2 + ỹ2) (3)

For limit cycle, we can see that V̇ (x̃, ỹ) < 0 when
V (x̃, ỹ) > 1

4v2, while V̇ (x̃, ỹ) > 0 when V (x̃, ỹ) <
1
4v2. This shows the following region is absorbing.

B = {ρ1 ≤ V (x̃, ỹ) ≤ ρ2, |0 < ρ1 <
1
4
v2, ρ2 >

1
4
v2}
(4)

Since this argument above is valid for any 0 <
ρ1 < 1

4v2, and ρ2 > 1
4v2, when ρ1, ρ2 get close

to 1
4v2, region B shrinks to the circle V (x̃, ỹ) =

1
4v2.This shows that the circle is a periodic orbit
as shown in Fig. 5(a) when v = 280, ρ = 0.01,
γ = 0.0001. This periodic orbit is called a limit
cycle. We can see the trajectory from any point
(x̃, ỹ) moves toward and converges to the limit cy-
cle clockwise when close. The counterclockwise

(a) clockwise (b) counterclockwise

Figure 5: Phase portrait of limit cycle

condition can be derived by the following system
(shown in Fig. 5(b)):

˙̃x = ρ(−ỹ + γx̃(
1
4
v2 − x̃2 − ỹ2))

˙̃y = ρ(x̃ + γỹ(
1
4
v2 − x̃2 − ỹ2)) (5)

Considering that the trajectory from any point
(x̃, ỹ) inside the limit cycle moves outward the
cycle, and the trajectory from any point (x̃, ỹ)
outside the limit cycle approaches the cycle with
distance determined by the relative speed v, the
limit cycle provides a method for obstacle avoid-
ance among multiple mobile robots.



In RoboCup Four-legged League, there are
many obstacles during the game. Robots can be
considered as motive obstacles. When the dog ap-
proaches a teammate holding ball, it must stay
out of the area where teammate handles ball, and
be ready to perform cooperative strategies. If the
dog holding ball encounters an opponent, it must
control the ball and quickly avoid the approach-
ing robot, especially when perform kicking ball in
front of opponent goalie. Own penalty area is an-
other one that can be taken for an obstacle. If the
robot moves parallel to own ground line, it must
avoid from walking into the own penalty area.

When the dog is in a safe region, by the dy-
namic limit cycle approach, it will move away the
obstacle toward the safe circle with a radius rel-
evant to the speed of the obstacle. Let α denote
the orientation of the obstacle, (x0, y0) the center
point of the obstacle. With the following trans-
formation, we get the expression of system (8) in
the original frame:

x = cos α(x̃ + x0)− sinα(ỹ + y0)
y = sin α(x̃ + x0) + cos α(ỹ + y0) (6)

Let v denote the translational velocity of the dog
in the original frame, θ the direction of the motion.
The kinematic model of the dog is described by:

ẋ = v cos θ

ẏ = v sin θ

ẋ

ẏ
= tan θ (7)

Then we can see:

v =
√

ẋ2 + ẏ2

θ = arctan
ẋ

ẏ
+ α (8)

Different obstacles have their own characters, with
ρ matching to characters respectively. Using ρ in
different values can control the magnitude of the
absolute speed.

With the dynamic radius of the limit cycle,
robot can perform more flexibly and rationally.
Satisfactory results are shown in our application
video. The implementation of this method is in-
troduced in our team report 2006.

4.2 Perform Near Border

In 2006, new behaviors and strategies correlated
to new border line are important. Any unappro-
priate behavior near border may cause a negative
impact. For example, if the ball is near border in
own half field, it is dangerous for the defender to
handle ball inappositely to let it out of field. Be-
cause it may benefit the opponent striker to con-
trol the ball. To avoid this situation, we imple-
ment the near border behavior.

We define that for a player, if the distance to
border line is less than 600mm, it enters the near
border area. It is simple that if the player handles
ball near border, it can hold ball and move it along
the direction vertical to borderline. However, ac-
tual test shows that different gaits along with
grabbing ball motion may not help control ball
well. Therefore, we divide the circle area around
player into four parts. Fig. 6 shows the differ-
ent parts of the near border area which may acti-
vate strategies respectively. We define the vari-
able robotPose.anlgle-to-border which represents
the absolute value of angle between robot’s body
direction and normal line to the border. Area 1
is the place where the angle-to-border is in range
from 120◦ to 180◦. In area 2 and 3, the angle
is between 80◦ and 120◦. Area 4 means the an-
gle is less than 80◦. In area 1, the robot grabs

Figure 6: Strategy field in near border area

ball and adjusts its body direction first. Then the
robot performs a sideways walk moving ball into
field. In area 2 and 3, the robot performs a side-
ways walk directly. Player walks forward directly
to the field if enters the area 4.

In GT2004, option handle-ball is used for
grabbing ball and taking relevant actions. To ap-
ply our strategy in near border area, we rewrite
the option handle-ball to control ball more ap-
propriately. Fig. 7 shows the states switching
in new option handle-ball. If the robot needs to

Figure 7: Option handle-ball

handle ball in near border area, option handle-ball
will activate the newly created option handle-ball-
near-border, shown in Fig. 8, which specifically
deals with the ball near border. In option handle-
ball-near-border, robot goes to the ball first and
then another new option back-and-turn-and-push
is activated. This option executes the basic ac-



Figure 8: Option handle-ball-near-border

tions to handle ball in motion level. Fig. 9 de-
scribes the details for option back-and-turn-and-
push. Applying new behavior and strategies men-

Figure 9: Option back-and-turn-and-push

tioned above, robot can play well on the field.
And the probability of out-field ball caused by own
players is relatively low.

4.3 Dribbling Ball

In a soccer game, the team that controls the ball
more will probably score more. There are two
ways to control the ball: a player’s dribbling and
two or more players’ passing. Passing ball between
robot players is still a difficult task, as shown in
the result of the Passing Challenge 2006. Our
team is also developing passing ball, but the re-
sult is not as good as that in developing dribbling
ball. The dribbling ball behavior in sharPKUngfu
2006 is based on the gait called walking with ball.
We use PSO based method to optimize the gait
so that the robot can walk with ball smoothly and
steadily in any direction: forward, backward, side-
ward and turning. Moreover, the robot can still
see as far as possible when walking with ball, be-
cause its uses the chin to control the ball and keeps
the head up (See Section 4.5 Chin Control). In the
dribbling ball behavior, the robot controls the ball
and walks towards the opponent goal. It will avoid
obstacles and adjust direction when walking with
ball. When the time is over (In Rule 2006 robots
are allowed to hold the ball for up to 3 seconds),
it will kick the ball to opponent goal or pass the
ball to its teammate.

4.4 Special Actions

GT2004 presents a series of good special actions
[2]. Most of them are useful, but they are not
exactly applicable with consideration of new rule.
New rule uses only white line instead of the bor-
der wall. This change not only affects vision and
behaviors module, but also asks for appropriate
special actions to perform near border, like han-
dling ball.

To perform well in new field, we design our
own set of special actions instead of those used
in GT2004 except the headLeft and headRight.
Those actions are tested in real games. All of
these actions have their own features and advan-
tages. Specifically for example, in action chestSoft
robot first holds the ball and then push the ball
out. The advantage of this special action is that
the ball can be held firmly and the opponent can
not easily capture the ball.

And we also changed the condition to activate
special actions. For instance, when the ball is near
the border line, any inapposite action may push
the ball out of the field. When the ball near the
border, we have two strategies using relative ac-
tions. In most cases, we use the method Perform
Near Border. In a few occasions, when the behav-
ior near border can not be activated, the special
actions using paw will be inspired, like slapLeft
or slapRight. The activated condition is carefully
tested.

4.5 Chin Control

Chin Control is another part that we implement
in the motion module of sharPKUngfu 2005. It
is designed to perform in Dribbling Ball behavior.
In this motion, the robot opens its mouth to an
appropriate angle, and holds ball combining with
the neck-tilt, the head-pan and the head-tilt mo-
tion. Using chin control, camera can be adjust
to relatively high position. It is quite useful to
avoid losing vision information when robot holds
the ball. Fig. 10 compares the actions for grab
ball used in different teams.

(a) (b)

Figure 10: Actions for grabbing ball in differ-
ent teams. (a) is the chin control in sharP-
KUngfu 2006, while (b) is the grabbing ball used
in GT2004

There is a problem in using chin to grab ball.
The control area using head to grab ball like (b)
in Fig. 9, is relatively larger than that one using



chin. If the next action is turning body around
or moving ball to left or right, the possibility of
losing ball control is increasingly high. To solve
this problem, we apply head control motion used
in GT2004 to perform in the circumstance men-
tioned above. Chin control is only used in grab-
bing ball when perform Dribbling Ball behavior.
Robot can use chin to help control ball to move
forward or backward.

5 Conclusion

In sharPKUngfu 2006, we have made improve-
ment in localization, locomotion and behavior
modules. In RoboCup 2006, we perform our tech-
nical improvement in open challenge, passing ball
and new goal challenge. The result makes us confi-
dent to perform in RoboCup Soccer competitions.
After RoboCup 2006, we participated in RoboCup
China Open 2006. Advantages in sharPKUngfu
2006 help our team make great success in this
event. We got champions both in soccer compe-
tition and technical challenge. After the event,
we focus our research on further study in col-
laborative localization, navigation and gaits opti-
mization. All the improvement is explained above
in detail. We have applied experience-based col-
laborative approach for localization which is im-
portant to make robots more rational and effi-
cient. In gaits optimization, we implemented PSO
based approach to get relatively high-speed for-
ward gaits. To perform better under the soccer
rule 2006, new behaviors and relevant actions have
been created to hold ball in the field to get bet-
ter performance. Besides, we tried to apply new
approach to percept robots and avoid dynamic ob-
stacles. Experiments in our lab show positive ef-
fect by using the real-time approach.

In 2007, we plan to let Aibo play in the envi-
ronment without any landmark towards real hu-
man soccer conditions. Further study should be
continued to exploit enough surrounding informa-
tion to help self-localization. In vision module,
we plan to implement color-edge based method to
recognize beacons and goals which are newly de-
fined in soccer rule 2007. Beside of forward gaits
optimization, we will implement PSO in other
different walking types to gain optimized motion
parameters. In multi-robot coordination, the re-
search on formation control will continue. In addi-
tion, we will continue to get involved in challenges
of passing ball and obstacle avoidance. The final
version of our code 2006 is now available on our
web site.
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